

 Navigation

 	
 index

 	
 next |

 	Spiff 0.1.0 documentation

Spaceman Spiff Manages Spaces

	Author:	Torrie Fischer <tdfischer@hackerbots.net>

	Contact:	irc://chat.freenode.net/#synhak

	Date:	July 19, 2014

	Version:	0.1.0

	Copyright:	Public Domain

Spaceman Spiff (or just Spiff) is a hackerspace management tool that helps
hackers manage a hackerspace. It comes with a builtin web interface for end
users, but is also exceptionally machine friendly.

Management of a hackerspace includes several topics:

	Membership

	Documentation

	Communication

	Infrastructure

	Governance

It is made available to the public under the AGPL.

Dependencies

Django==1.6
Jinja2==2.6
South==0.8.3
Sphinx==1.1.3
git+https://github.com/LeadSift/django-gravatar.git#egg=django-gravatar
django-notification
git+https://github.com/tdfischer/django-openid-auth.git#egg=django-openid-auth
django-openid-provider==0.4
django-webfinger==0.2
django-bootstrap-toolkit==2.15.0
django-tastypie==0.10.0
docutils==0.10
isodate==0.4.9
python-openid==2.2.5
qrcode==2.4.2
requests==1.0.4
stripe==1.7.7
wsgiref==0.1.2
xrd==0.1
mimeparse==0.1.3
django-nose==1.2
django-cors-headers
PyJWT

Features

	Track member dues to see who is paid for the month

	Multiple ranks with independent monthly dues

	Keep track of space resources and metadata associated with each
resource

	Create arbitrary membership fields with visibility settings such as
“Door Keycode” (editing/viewing limited to officers), “Enjoys Smooth
Jazz” (viewing limited to members only), or “Nobel Prizes Earned”
(public to the internet).

	A thorough REST api to access everything

	A skill tracking system

	Simple interface to sensors

	Perform actions when sensors are updated

	An implementation of the SpaceAPI

	Accept member dues through Stripe

	Use of Django’s builtin admin interface to provide low-level database editing.

	Keep track of who is certified to use equipment

	Merit based equipment skill level ranking system

Contents:

	Installation
	In Brief

	Common Environments

	Usage
	Configuring your Space

	Membership

	Resources

	Events

	Sensors

	Management Commands

	Permissions
	auth.change_user

	auth.delete_user

	events.add_event

	events.can_reserve_resource

	events.change_event

	inventory.certify

	inventory.change_resource

	inventory.can_train

	membership.add_duepayment

	membership.can_change_member_rank

	membership.can_edit_protected_fields

	membership.can_view_hidden_members

	membership.can_view_member_rank

	membership.can_view_private_fields

	Sensors
	Boolean Sensors

	Pamela

	Sensor Actions

	API Documentation
	REST API

	Deprecated REST API

	Developing Spiff

	Spaces using Spiff

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

Installation

Since Spiff is written with Django, the Django installation docs [https://docs.djangoproject.com/en/1.6/topics/install/] may be a helpful primer.

In Brief

	Create a local_settings.py that contains any values you want to
override from settings.py.

	Install your dependencies:

$ pip install -r pip-requirements

	$./manage.py syncdb –migrate

	Go nuts.

The default settings use sqlite3 as the database, with
/path/to/spiff/spiff.sqlite3 as the file.

Common Environments

MySQL

Here is an example configuration to put in local_settings.py:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'spiff',
 'USER': 'spiff',
 'PASSWORD': 'hunter2',
 'HOST': '',
 'PORT': ''
 }
}

Leaving HOST and PORT empty uses ‘localhost’ at the default mysql port.

Please refer to the Django MySQL docs [https://docs.djangoproject.com/en/1.6/ref/databases/#mysql-notes] for more details.

Apache

This section is included as an example to get Spiff and Apache to work
together in harmony. It is more or less exactly how we run things at
synhak.org

First, decide where you’re going to serve up spiff. Keep in mind: this
URL should probably never ever ever change in your space’s lifetime. QR
codes, hardware sensors, door swipes, and whatever else you have talking
to Spiff will need reconfigured if things ever move. We run our instance
at https://synhak.org/auth/

Our git clone of Spiff is located in /usr/share/spiff/.

$ git clone git://github.com/SYNHAK/spiff.git /usr/share/spiff/ $ cd
/usr/share/spiff/ Configure your local_settings.py here $./manage.py
syncdb –migrate

In /etc/httpd/conf.d/synhak.org.conf:

<VirtualHost *:80>
 LoadModule wsgi_module modules/mod_wsgi.so
 WSGIScriptAliasMatch ^/auth(/([^~].*)?)$ /usr/share/spiff/spiff/wsgi.py$1
 Alias /auth/static /usr/share/spiff/spiff/static
 WSGIPassAuthorization On
 WSGIDaemonProcess spiff-1 user=apache group=apache threads=25
 WSGIProcessGroup spiff-1
</VirtualHost>

That is all you need. You may then access spiff at
http://your-space.org/auth/

Other information for using Django with mod_wsgi can be found at the Django mod_wsgi howto guide [https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/modwsgi/].

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

Usage

Configuring your Space

To rename your hackerspace, configure the only available Site object in the
Django admin interface. If you have more than one Site object, configure one to
use the correct domain name, delete the others, and optionally let the
developers know how it got there since Spiff should only ever have one.

Other properties are configurable through the SpaceConfig object in the Django
admin UI:

	site:	Refers to the Django object. This shouldn’t be changed unless you’ve got a
good reason to.

	logo:	URL that points to your space’s logo. It may be absolute, or relative to
your Spiff URL.

	openIcon:	Used as part of the SpaceAPI to indicate a graphic to display if the
space is open.

	closedIcon:	Same as the openIcon.

	url:	Your space’s website.

	open:	Determines if your space is currently open or closed. Also see Open
Sensor, which provides programatic access to this.

	lat and lon:	Latitude and longitude

	address:	Your space’s physical location.

	status:	A free-form field that is shown in the SpaceAPI. For example, “Open
to members only”, or “Closed due to inclement weather”.

	openSensor:	See Open Sensor.

Open Sensor

It is possible to configure Spiff to automatically handle opening/closing your
space with the Sensors system, for whatever definition of “open” or “closed”
you have. The associated sensor must be a boolean type. When it has a true
value, the space is reported as open through the SpaceAPI. It is reported
as closed for false values. Refer to the Sensors chapter for details.

Membership

Spiff provides a basic system for staff to manage a member database,
self-service membership management, and accepting dues via Stripe [http://stripe.com/].

Each member has a few basic fields that should be filled out:

	Email

	First Name

	Last Name

	Birthday

	Profession

These fields are public to the general internet, except for hidden users.

Administrators can add extra fields such as phone number, mailing
address, emergency contact information, etc. These extra fields have
three flags available:

	Required - The profile will not save and a user can’t register
without this field being filled out. Examples: emergency contact information,
digital signature proving they read the rules, preferred objective description
of the color #33ff62.

	Public - Other members can read the field, but not the entire
internet. Members can edit their own public fields. Fields that are
not public can still be read by those with the can_view_private_fields permission. Examples:
IRC nickname, membership sponsors, or exact reasons for disliking ABBA.

	Protected - Only those with the can_edit_protected_fields permission can view and edit
the field. Members can read the value of their own protected fields,
but can’t edit them. This is useful for things that members should know about
themselves, but others shouldn’t know about others, and members shouldn’t be
able to change. Examples: a key/RFID token ID number, a note proving that
they signed a liability waiver, a third meta-item that points out this is the
third item in the third list of lists of threes [http://en.wikipedia.org/wiki/Rule_of_three_(writing)] and thus three times as funny.

Ranks

Many spaces have a set of ranks, such as “Basic Membership”, “Board Member”,
etc. Spiff allows you to model this via Spiff’s Ranks and Django’s builtin groups.

To create a new rank, such as “Basic Membership”, create a new Group object via
the Django admin interface. This automatically creates a Rank object, which has
several properties:

	monthlyDues:	How much it costs per month for this rank, in USD.

	group:	The Django group object this rank refers to. There shouldn’t be a need to
ever change this.

	isActiveMembership:

		If a member is in this rank, they are considered an active member. This
property is used to determine if a user pays dues, and to show the list of
active members.

	isKeyholder:	If a member is in this rank, they are considered a keyholder. This property
is used by the SpaceAPI to list keymasters.

Each underlying Django group object can have a set of permissions attached to
it, which grants all members of the group those permissions.

Those with the membership.can_change_member_rank permission may edit a
user’s ranks by visiting the user’s profile page.

See also

Permissions

Membership Dues

Managing membership dues is fairly straightforward, and involves very little
usage of the confusing Django administration interface: Simply configure the
isActiveMembership and monthlyDues properties of your roles and
forget about the admin interface.

A member’s profile page will list their recent due payments, along with an
option to record a payment that was not handled by Spiff, such as cash or some
other payment method.

Recording partial payments are supported. This is useful for instances such as a
member paying $10 in cash and the last $40 via Stripe, or forgetting that dues
are $35 and not $30.

To enable stripe, set your API key in local_settings.py:

	::

	STRIPE_KEY = “sk_test_foofoofoo”

Resources

In every hackerspace, theres a bunch of equipment sitting around that
not everyone might know how to use or even what it is called. Spiff
solves that problem.

You can create a Resource object in Spiff for each real-world resource.
After it is created, metadata can be attached to it and edited by users
with the correct permissions. Members can also keep track of their
training on the site, along with their relative skill ranks.

Users require the inventory.certify permission to be able to add and remove
certifications from members.

Skill ranking works on an honor system that requires users
undergo a vetting process by other users:

	Your hackerspace acquires a nice new lathe.

	A member adds the lathe to the database, prints out the QR code and
sticks it on the machine.

	Another member who happens to be a master metalworker sees that there
is a Lathe, scans the code (or visits the resource page) and clicks
“I have used this!” to indicate that they have used a Lathe at some
point in their life.

	A second member (who is a total newbie to metalworking) also clicks
“I have used this!”. Spiff says that both the newbie and the master
are ranked at the same skill level, so they click “They are better
than me”.

	Spiff now indicates that the master is better trained at the lathe
than the newbie and sorts them accordingly.

At no point can the newbie say that they are better than the master
without the master explicitly promoting the newbie to their level.
Additionally, the newbie can’t demote the master. Members are ranked
relative to each other based on this feedback system.

Not all resources in a hackerspace are trainable! For instance, it makes
no sense to say that someone is more skilled at using the classroom or
meeting area. When creating a resource, you can specify if a resource
can be trainable or not.

Events

Spiff also allows for tracking of events. Anyone with a proper
permission can create an event (and later edit it). Members can easily
RSVP for an event with a link on the event page. There is no special
permission required to state that you are attending an event.

If an event requires the use of some resource (which could be a
classroom, or maybe its a class on using the lathe), it is possible to
reserve the use of a resource by adding it to the event. This reservation system
is purely an advisory one at the moment. Nothing will stop someone from
reserving an already reserved item, or physically blocking you from using it.

Events can have multiple organizers, who are able to edit an event’s
description and reserve resources. Organizers may only be added or removed by
the event creator.

Sensors

See Sensors for complete documentation.

Management Commands

There are a number of management commands available through manage.py.

	list_members

	Lists the email addresses of active members. At SYNHAK, we pipe the output
of this through to mailman’s sync_members script to subscribe active members
to the members only list.

	stripe_sync

	Currently useless. Will soon be used to support automatic billing and
advanced invoicing through Stripe. It creates a Customer in stripe for each
Member in Spiff.

	permission_list

	Lists all permissions in Spiff and Django.

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

Permissions

Spiff has a set of permissions that say who can do what on the
site.

It is recommended to create a general purpose “Active Member” rank to
keep track of who is and isn’t a member and to provide a base set of
permissions that apply to all members. Afterwards, you can create new
ranks for each membership level in your hackerspace.

Note

Run ./manage.py permission_list to retrieve a list of permissions and
brief descriptions. Only permissions used in Spiff codebase are
documented. See the Django auth reference [https://docs.djangoproject.com/en/1.6/topics/auth/] for information about
how permissions work inside Django.

auth.change_user

The user can edit the profiles of other users.

auth.delete_user

The user can delete other users.

events.add_event

The user can create events and edit their own events.

events.can_reserve_resource

The user can attach resources to their own events.

events.change_event

The user can edit other user’s events. This along with can_reserve_resource is required for being able
to attach resources to events that they don’t own.

inventory.certify

The user may grant and remove certifications for resources from members.

inventory.change_resource

The user can add and modify resource metadata.add_metadata,
change_metadata, etc are not used at all in Spiff.

inventory.can_train

The user can promote other users’ trainings and add themselves to a
resource at the lowest level.

membership.add_duepayment

The user may add previous due payments to Spiff.

membership.can_change_member_rank

The user may view modify the ranks a member belongs to.

membership.can_edit_protected_fields

The user can edit and view profile fields that are protected.

membership.can_view_hidden_members

The user is able to view members that have the hidden flag set.

membership.can_view_member_rank

The user is able to view another user’s ranks.

membership.can_view_private_fields

The user can view any field that does not have the Public flag set.

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

Sensors

Spiff is intended to be the central brain of a hackerspace. As such, it
includes functionality for tracking various sensors in the space.

There are five basic types of sensors:

	number

	string

	binary

	json

	temp

	boolean

The type of sensor is just a hint to tell API users how to display the
data if the exact purpose of the sensor is unknown. For example, the
spiff web UI will show a history graph for number sensors. The sensor
types adhere to the SpaceAPI standard: http://hackerspaces.nl/spaceapi/

To update a sensor, send a POST request to the sensor’s page (i.e.
/sensors/1) with a single ‘data’ parameter containing the new sensor
data:

$ curl –data “data={‘test’: true}” http://example.com/sensors/1

The data can be anything: an image, a number, a basic string that says
“Hello!”, more strutured JSON data, or whatever else you want to put in
there. Spiff doesn’t care (except for Boolean Sensors, it just stores the data until someone else
wants it.

Boolean Sensors

Spiff’s REST API translates certain values into native values for requested
serialization formats, and for the Open Sensor.

Accepted values that mean false:

	The string “false” (case-insensitive)

	The string “0”

	An empty string

Anything else is interpreted as true.

Pamela

Pamela is described as a “very cool way to visualize any kind of data”.
You can find it at http://www.hackerspace.be/Pamela

Spiff is totally 100% compatible with Pamela’s basic API.

To use pamela’s ARP scanner with Spiff:

$./pamela/scanner/pamela-scanner.sh -i "eth0" -o \
 "http://example.com/sensors/1" -t mac.csv -d \
 "/var/lib/dhcpd/dhcpd.leases"

Please see Pamela’s documentation for more details.

Sensor Actions

Spiff can do stuff when sensors are updated. There are 4 kinds of actions that
can be added via the Django admin interface:

	http: Sends a HTTP GET request to the given url

	exec: Runs a command via subprocess.call_

	python: Executes some python code. A spiff.sensors.models.Sensor object is available in the ‘sensor’ variable.

	script: Writes a blob of text to a temporary file, performs chmod +x, and runs it.

Warning

Be extremely careful with the exec, python, and script actions! The commands
are ran by the python process, which also means don’t run spiff as root ever!
Scary things can happen! Don’t forget that your members trust you with the
information you keep in spiff!

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

API Documentation

Spiff has had two separate APIs over its lifetime, a versioned cherrypy powered
one, and a hacked together homebrew one.

All active development continues on the versioned API, while the deprecated one
is scheduled for removal before the first full release. It is documented here
for posterity, as there already exist a number of experimental deployments.

REST API

Documentation is forthcoming. Check out /v1/?format=json in your browser for
some hints.

General purpose information about the space is available by fetching
/status.json, as per the SpaceAPI.

	SpaceAPI
	Spiff Extensions

Deprecated REST API

Spiff’s versioned API addresses a number of shortfalls in the previous API:

	It was a bear to maintain

	Didn’t implement a number of important features, such as result pagination

	POSTing updates had limited authentication control

Just about everything in Spiff is accessible through REST. It is as easy
as adding .json to the end of your URLs:

$ http://example.com/sensors/1.json curl
http://localhost:8000/sensors/1.json { “description”: “A list of devices
in the space”, “name”: “pamela”, “value”: { “stamp”:
“2012-10-31T15:28:53.901053+00:00”, “sensor”: “#Sensor#1”, “id”: 6,
“value”: “{‘test’: true}” }, “id”: 1

Due to the cyclic nature of the database, some values are references to
other objects. This is indicated by the syntax “#Type#ID”, such as
“#Sensor#1”.

Other serialization formats may be added later if there is enough
demand.

REST documentation pages

	Resources

	Sensors

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

 	API Documentation

SpaceAPI

Spiff currently implements version 0.12 of the SpaceAPI. You can read
more about it at http://hackerspaces.nl/spaceapi/

You may access the SpaceAPI through /status.json, as per the standard. If your
spiff installation is accessed via a different url (eg: https://synhak.org/auth/),
status.json will be at /auth/status.json.

See also

Configuring your Space

Spiff Extensions

Spiff adds a few minor extensions to the SpaceAPI:

	x-spiff-url:	The URL used to access spiff. Can be used to build full REST urls, such as
http://example.com/path/to/spiff/resources/1.json

	x-spiff-version:

		The version of the Spiff REST API. This is not the version of spiff
installed!

	x-spiff-open-sensor:

		The ID of the sensor used to determine if the space is open or not. See
Open Sensor for details.

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

 	API Documentation

Resources

	/resources/.json

Returns a list of all resources

	/resources/{id}.json

Returns data for the specific resource.

	/resources/{id}/meta

Parameters:

	name - The name of the metadata value

	value - The value

	type - The type of metadata.

	/resources/{id}/train

	/resources/{id}/promote

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

 	API Documentation

Sensors

	/sensors/.json

Returns a list of all sensors.

	/sensors/{id}.json

Returns data for the given sensor.

Parameters:

	data - The data to be updated with.

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Spiff 0.1.0 documentation

Developing Spiff

Spiff is hosted on GitHub: http://github.com/synhak/spiff

The preferred coding style is Pep 8. If you submit a patch or merge request that is not formatted with Pep 8, thats ok, it’ll get cleaned up.

Spiff is a side effect of SYNHAK. You can find some of the developers and users in #synhak on chat.freenode.net.

[image: https://travis-ci.org/SYNHAK/spiff.png]
 [https://travis-ci.org/SYNHAK/spiff]

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	Spiff 0.1.0 documentation

Spaces using Spiff

Spiff is kinda new, but if you’re looking to know more about how others use it, here’s a list of spaces using Spiff:

	SYNHAK [http://synhak.org], Akron, Ohio, USA

If your space uses Spiff, here is a bitcoin address you may use to contribute
to: 15fvBnRowyDshudNRKAiBYhTyKEUwnnywQ

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	Spiff 0.1.0 documentation

Index

 Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Spiff 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Torrie Fischer.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

